Received 13 March 2007

Accepted 13 April 2007

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Zhen-Feng Zhang,<sup>a</sup> Jin-Ming Zhang,<sup>a</sup> Jian-Ping Guo<sup>b\*</sup> and Gui-Rong Qu<sup>a</sup>

<sup>a</sup>College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, and <sup>b</sup>Institute of Modern Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China

Correspondence e-mail: zzf5188@sohu.com

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.003 Å R factor = 0.028 wR factor = 0.074 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# trans-4,5-Dihydroxyimidazolidine-2-thione

In the title compound,  $C_3H_6N_2O_2S$ , the five-membered ring has an envelope conformation and the two hydroxyl groups lie on opposite sides of the ring. The crystal structure is stablized by intermolecular  $O-H\cdots S$  and  $N-H\cdots O$  hydrogen bonds, and also a close  $O\cdots O$  intermolecular approach, to form a two-dimensional network parallel to *bc*.

### Comment

It is known that both imidazolidine-2-thione and imidazolidin-2-one derivatives exhibit powerful bioactivities. For example, N,N'-disubstituted 4,5-dihydroxyimidazolidine-2-thiones have a powerful ectoparasiticidal action (Enders et al., 1979) and N,N'-disubstituted 4,5-dihydroxyimidazolidin-2-ones possess good herbicidal activity (Perronnet & Teche, 1973). A number of molecules having this heterocyclic ring exhibit potent antidiabetic properties (Lenzen & Ahmad, 2001) and anti-HIV activity (Lam et al., 1994). N,N'-disubstituted 4,5dihydroxyimidazolidine-2-thiones (ones) can be readily prepared by condensation of disubstituted thioureas with glyoxal and they exhibit great stability (Enders et al., 1979; Perronnet & Teche, 1973). In the course of our research on imidazolidinones, we recently needed to prepare N,N'unsubstituted 4,5-dihydroxyimidazolidine-2-thione as a synthetic intermediate. However, initial synthetic efforts in our laboratory indicated that the title N,N'-unsubstituted 4,5dihydroxyimidazolidine-2-thione, (I), is not easily accessible under the reported conditions, because of its instability. Thus, it seemed desirable to try to understand what structural factors affect its stability. Therefore, an X-ray crystallographic analysis of the compound has been completed and the results are presented here.



The molecular structure of (I) is shown in Fig. 1. The fivemembered ring (N1/N2/C1–C3) has a flattened envelope conformation; C3 is the flap atom, displaced by 0.311 (2) Å from the plane of the other four atoms. The conformation of the five-membered ring and coplanarity of the S1/C1/N1/N2/ C2 fragment are similar to the situation found in a complex of 1,3-imidazole-2-thione with mercury(II) chloride (Pavlović *et* 

© 2007 International Union of Crystallography All rights reserved

## organic papers

*al.*, 2000). The two hydroxyl groups lie on opposite sides of the ring. The C1–N1 and C1–N2 bonds [1.336 (2) and 1.335 (2) Å, respectively] are shorter than the corresponding bonds in 1,3-dibenzoylimidazolidine-2-thione [1.377 (1) Å; Kazak *et al.*, 2005]. Conversely, the C1=S1 bond is longer [1.684 (2) *versus* 1.650 (1) Å].

The crystal structure is held together by a combination of two intermolecular N-H···O and two O-H···S hydrogen bonds. There is also a close O···O intermolecular approach  $[O2 \cdot \cdot O2^v = 2.895 (2) \text{ Å}; \text{ symmetry code: } (v) 1 - x, 2 - y, 1 - z]$ . These interactions result in the assembly of the molecules into layers parallel to *bc* (Fig. 2 and Table 1).

## **Experimental**

Into a three-necked round-bottomed flask equipped with a mechanical stirrer were introduced thiourea (38 g, 0.5 mol) and water (50 ml). Glyoxal (75 g, 40%) was added in one portion and the mixure was then heated at about 343 K with stirring for 30 min under an inert atmosphere. Natural cooling of the reaction mixture overnight gave single crystals of (I) (yield 54 g, 80%).

 $\gamma = 102.494 \ (3)^{\circ}$ V = 272.93 (10) Å<sup>3</sup>

Mo Ka radiation

 $0.50 \times 0.40 \times 0.15~\text{mm}$ 

1137 measured reflections

938 independent reflections

913 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.49 \text{ mm}^{-1}$ 

T = 293 (2) K

 $R_{\rm int} = 0.014$ 

Z = 2

#### Crystal data

```
\begin{array}{l} C_{3}H_{6}N_{2}O_{2}S\\ M_{r}=134.16\\ \text{Triclinic, }P\overline{1}\\ a=5.8092\ (13)\ \text{\AA}\\ b=6.5152\ (13)\ \text{\AA}\\ c=7.9189\ (17)\ \text{\AA}\\ \alpha=98.595\ (3)^{\circ}\\ \beta=106.740\ (3)^{\circ} \end{array}
```

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.644, T_{\rm max} = 0.929$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.028$ | 73 parameters                                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.074$               | H-atom parameters constrained                              |
| S = 1.10                        | $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ \AA}^{-3}$  |
| 938 reflections                 | $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H    | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|--------|-------------------------|--------------|--------------------------------------|
| $O1-H1\cdots S1^i$          | 0.82   | 2.44                    | 3.245 (3)    | 167                                  |
| O2-H2··· $S1$ <sup>ii</sup> | 0.82   | 2.42                    | 3.238 (3)    | 175                                  |
| N1-H3···O2 <sup>iii</sup>   | 0.86   | 2.35                    | 3.004 (2)    | 133                                  |
| $N2-H4\cdots O1^{iv}$       | 0.86   | 2.00                    | 2.826 (2)    | 162                                  |
| Symmetry codes:             | (i) -x | +1, -v + 1, -z          | +2; (ii) x.  | v + 1, z: (iii)                      |

-x + 1, -y + 1, -z + 1; (iv) x - 1, y, z. (ii) x, y + 1, z, y + 1, z,

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C-H = 0.98 Å, O-H = 0.82 Å and N-H = 0.86 Å, and with  $U_{iso}(H) = xU_{eq}$ (carrier atom), where x = 1.2 for C-H and N-H or 1.5 for O-H.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve



The molecular structure of (I), showing 50% probability displacement ellipsoids.



#### Figure 2

A packing diagram for (I), with intermolecular interactions represented by dashed lines. Non-H atoms are shown as 10% probability displacement ellipsoids and H atoms are drawn as small spheres of arbitrary radius. Atoms marked with an asterisk (\*), hash (#), dollar sign (\$), ampersand (&) or 'at' symbol (@) are at the symmetry positions (1 - x, 1 - y, 2 - z), (x, 1 + y, z), (1 - x, 2 - y, 1 - z), (1 - x, 1 - y, 1 - z) and (x, -1 + y, z), respectively.

structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the Physiochemical Analysis Measurement Centre of the Institute of Chemistry, Shanxi University. We also acknowledge Professor Jun-Ming Tang for his helpful measurement and discussion during the preparation of the paper. Finally, we acknowledge the Initial Fund for Scientific Research of Henan Normal University.

## References

Bruker (1998). SMART (Version 5.0) and SAINT (Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

- Enders, E., Ebbighausen, V., Gau, W., Wunsche, C. & Stendel, W. (1979). US Patent 4 173 645.
- Kazak, C., Yilmaz, V. T., Servi, S., Koca, M. & Heinemann, F. W. (2005). Acta Cryst. C61, 0348–0350.
- Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J., Hodge, C. N., Ru, Y., Bacheler, L. T., Meek, J. L., Otto, M. J., Rayner, M. M., Wong, Y. N., Chang, C.-H., Weber, P. C., Jackson, D. A., Sharpe, T. R. & Erickson-Viitanen, S. (1994). *Science*, **263**, 380–384.
- Lenzen, S. & Ahmad, R. (2001). Ger. Offen. DE 10 012 401.
- Pavlović, G., Popović, Z., Soldin, Z. & Matković-Čalogović, D. (2000). Acta Cryst. C56, 61–63.
- Perronnet, J. & Teche, A. (1973). US Patent 3905996.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.